metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jie Liu, Jun-Hong Zhang, Da-Qi Wang* and Jian-Min Dou

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China

Correspondence e-mail: wdq4869@163.com

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.009 \text{ Å}$ R factor = 0.051 wR factor = 0.067 Data-to-parameter ratio = 15.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis{bis[2,5,8,11,14-pentaoxabicyclo[13.4.0]nonadeca-1(15),16,18-triene]potassium(I)} bis(2-thioxo-4,5-dihydro-1,3-dithiole-4,5dithiolato)zinc(II)

The title complex, $[K(C_{14}H_{20}O_5)]_2[Zn(C_3S_5)_2]$ or $[K(B-15-C-5)_2]_2[Zn(dmit)_2]$ (B-15-C-5 = benzo15-crown-5 and dmit = 4,5-dimercapto-1,3-dithiole-2-thione), contains two { $[K(B-15-C-5)_2]_2$ }⁺ complex cations and one $[Zn(dmit)_2]^{2-}$ complex anion in the asymmetric unit. The complex has a three-dimensional network structure assembled by intermolecular S···S and weak C-H···S interactions.

Received 13 July 2005 Accepted 22 July 2005 Online 30 July 2005

Comment

The crystal structure of $[K(B-15-C-5)_2]_2[Zn(dmit)_2]$ (B-15-C-5 = benzo-15-crown-5 and dmit = 4,5-dimercapto-1,3-dithiole-2thione), (I), contains two $\{[K(B-15-C-5)_2]_2\}^+$ complex cations, and one $[Zn(dmit)_2]^{2-}$ complex anion in the asymmetric unit (Fig. 1). The Zn atom is coordinated by four S atoms from two dmit ligands, the S4–Zn1–S10, S10–Zn1–S5, S5–Zn1–S9, S4–Zn1–S5 and S10–Zn1–S9 angles show the Zn atom exists in a tetrahedral geometry, with a dihedral angle of 94.3 (7)° between S4–Zn1–S5 and S9–Zn1–S10. The dihedral angle between S4–C59–C58–S5 and S1–C59–C58–S2–C57 is 1.98 (18)°, and that between S9–C61–C62–S10 and S7–C61–C62–S6–C60 is 1.0 (2)°. The Zn–S bond distances lie in the range 2.3159 (14)–2.3414 (13) Å (Table 1).

In the two crystallographically distinct $[K(B-15-C-5)_2]^+$ cations, each K atom is coordinated by ten O atoms from two benzo-15-crown-5 molecules and the environment of each K atom is the same. The K–O distances range from 2.783 (3) to 3.117 (3) Å, with a mean value of 2.903 Å, which is consistent with the corresponding value in the compound $(Bu_4N)[K(18-C-6)][Cd_4(dmit)_2(dmt)_3]$ (dmt = 4,5-dimercapto-1,2-dithiole-3-thione; Wang *et al.*, 2003). Furthermore, from Fig. 2 it can be

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The structure of the title complex, showing 30% probability displacement ellipsoids. H atoms have been omitted.

Figure 2

Crystal packing of the title complex, showing the S···S weak interactions and the C–H···S bonds (dashed lines).

seen that the complex has a three-dimensional network structure assembled by intermolecular head-to-tail $S3\cdots S8(x - 1, y - 1, z)$ weak interactions between adjacent dmit groups, and intramolecular or intermolecular C-H···S hydrogen bonds between the dmit ligand and the benzo ring of B-15-C-5-crown-5. Bonds lengths and angles agree with accepted values; full details are given in the archived CIF.

Experimental

To a solution of B-15-C-5-crown-5 (1.00 mmol) in 1,2-dichloroethane (10 ml) was added an aqueous (5 ml) mixture of $ZnCl_2$ (0.25 mmol)

and a solution of K₂dmit (0.5 mmol) in ethanol (5 ml). The reaction mixture was stirred for 2 h at room temperature and then filtered. The precipitate was dissolved in a mixture of ethanol and diethyl ether (4:1, ν/ν). Colorless single crystals were obtained by slowly evaporating the solution (m.p. 576 K). Analysis calculated for C₆₂H₈₀K₂O₂₀S₁₀Zn: C 46.27, H 5.01, S 19.92%; found: C 46.13, H 4.91, S 19.87%.

Crystal data

$$\begin{split} & [K(C_{14}H_{20}O_5)]_2[Zn(C_3S_5)_2] \\ & M_r = 1609.43 \\ & \text{Triclinic, } P\overline{1} \\ & a = 10.9614 \ (12) \ \mathring{A} \\ & b = 16.1352 \ (17) \ \mathring{A} \\ & c = 22.026 \ (2) \ \mathring{A} \\ & \alpha = 98.832 \ (2)^{\circ} \\ & \beta = 94.633 \ (3)^{\circ} \\ & \gamma = 103.500 \ (2)^{\circ} \\ & V = 3715.4 \ (7) \ \mathring{A}^3 \end{split}$$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.727, T_{max} = 0.792$ 20681 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.067$ S = 0.8112981 reflections 856 parameters Z = 2 $D_x = 1.439 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 2462 reflections $\theta = 2.2-18.6^{\circ}$ $\mu = 0.79 \text{ mm}^{-1}$ T = 295 (2) K Block, colorless $0.43 \times 0.37 \times 0.31 \text{ mm}$

12981 independent reflections 4843 reflections with $I > 2\sigma(I)$ $R_{int} = 0.051$ $\theta_{max} = 25.0^{\circ}$ $h = -13 \rightarrow 10$ $k = -19 \rightarrow 19$ $l = -20 \rightarrow 26$

H-atom parameters constrained	d
$w = 1/[\sigma^2(F_0^2)]$	
$(\Delta/\sigma)_{\rm max} = 0.001$	
$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$	
$\Delta \rho_{\rm min} = -0.39 \text{ e} \text{ Å}^{-3}$	

Table 1

Selected geometric parameters (Å, °).

Zn1-S4	2.3159 (14)	K2-O17	2.967 (3)
Zn1-S10	2.3178 (14)	K2-O16	2.994 (3)
Zn1-S5	2.3276 (13)	K2-O12	3.011 (3)
Zn1-S9	2.3414 (13)	K2-O11	3.069 (3)
K1-O9	2.783 (3)	S1-C57	1.697 (5)
K1-O4	2.790 (3)	S1-C59	1.738 (4)
K1-O10	2.829 (3)	S2-C57	1.727 (4)
K1-O5	2.837 (3)	S2-C58	1.749 (4)
K1-O3	2.876 (3)	\$3-C57	1.645 (4)
K1-O1	2.911 (3)	S3-S8 ⁱ	3.5034 (19)
K1-O8	2.917 (3)	S4-C58	1.731 (4)
K1-O2	2.959 (3)	S5-C59	1.716 (5)
K1-O7	3.034 (3)	S6-C60	1.741 (4)
K1-O6	3.117 (3)	S6-C62	1.747 (4)
K2-O14	2.762 (4)	S7-C60	1.696 (4)
K2-O15	2.794 (3)	S7-C61	1.735 (4)
K2-O19	2.795 (4)	S8-C60	1.645 (4)
K2-O20	2.811 (3)	S9-C61	1.732 (4)
K2-O18	2.884 (4)	S10-C62	1.725 (4)
K2-O13	2.927 (4)		
S4-Zn1-S10	120.26 (5)	S4-Zn1-S9	116.65 (5)
S4-Zn1-S5	95.64 (5)	S10-Zn1-S9	94.80 (5)
S10-Zn1-S5	112.18 (5)	S5-Zn1-S9	119.07 (5)

Symmetry code: (i) x - 1, y - 1, z.

Table 2	
Hydrogen-bond geome	etry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C30-H30···S2	0.93	2.93	3.685 (5)	140
$C21 - H21B \cdot \cdot \cdot S1$	0.97	2.93	3.706 (5)	138
C13−H13B···S5	0.97	2.99	3.852 (5)	149
C33-H33···S3 ⁱⁱ	0.93	2.90	3.756 (6)	154
$C3-H3\cdots S2^{iii}$	0.93	2.93	3.849 (9)	171
$C35-H35A\cdots S8^{iv}$	0.97	2.95	3.665 (5)	131
$C49-H49B\cdots S10^{v}$	0.97	2.92	3.791 (6)	150
$C24-H24A\cdots S9^{vi}$	0.97	2.96	3.906 (5)	165
$C7-H7A\cdots S9^{vii}$	0.97	2.97	3.538 (5)	119
			. ,	

Similarity restraints were applied to displacement parameters of some ligand atoms to avoid extreme values. All H atoms were positioned geometrically and treated as riding on their parent atoms, with aromatic C-H distances of 0.93 Å and methylene C-H distances of 0.97 Å. The $U_{\rm iso}({\rm H})$ values were set at $1.2U_{\rm eq}({\rm C})$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

We acknowledge the financial support of the Liaocheng University Science Foundation.

References

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Wang, D.-Q., Dou, J.-M., Niu, M.-J., Li, D.-C. & Liu, Y. (2003). Chin. Acta Chim. Sin. 61, 551–555.